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Abstract

In this project, our objective was to train an AI tutor
specialized in the course content at EPFL. Our goal is to
assist students in their learning by providing a language
model capable of generating answers to questions in sci-
ence, technology, computer sciences, engineering, and
mathematics. We aim for our model to offer not just an-
swers, but also well-defined, step-by-step explanations
to ensure that even complete beginners can understand
the material clearly. In order to do this we split the
task in 3 step. First we collected data in order to train
our languages models. First, we collected data to train
our language models. Next, we trained the model us-
ing Direct Policy Optimization (DPO). Additionally, we
specialized it to provide highly accurate single-letter
answers for multiple-choice questions. Finally, we ex-
panded our model’s capabilities to retrieve information
from documents and also making it more compact.

1 Introduction

It’s extremely difficult for an AI language model to provide
correct answer for math, programming and science ques-
tion. Even, ChatGPT4.o from OpenAI still does mistakes
and is unable to answer correctly to some math, coding
questions or in other fields. Why is it so hard to create a
good large language model teaching assistant?

• Complex Calculations: Math often requires perform-
ing complex calculations accurately. Small errors in
computation can lead to incorrect answers, and lan-
guage models, unlike traditional computational soft-
ware, aren’t inherently designed to handle intricate
arithmetic with perfect precision.

• Abstract Concepts: Many mathematical concepts are
abstract and require a deep understanding of underly-
ing principles. For instance, solving differential equa-
tions or understanding topological spaces involves
more than just applying formulas—it requires com-
prehension of theoretical concepts that are difficult to
encode into a model.

• Debugging and Logic: Writing correct code often
involves debugging and understanding complex logic.
Models may generate code that looks correct but fails
to execute properly due to logical errors, missing edge
cases, or incorrect assumptions about input and out-
put. Context Understanding: Programming questions
often depend on understanding the specific context of
the problem, such as the requirements and constraints.
Also, the AI is not updated each time a library changed.

Language models can struggle to keep track of con-
text over longer conversations or intricate problem
statements.

• Interdisciplinary Knowledge: Science encompasses
a wide range of disciplines, each with its own set
of principles, terminologies, and methodologies. A
model needs to be proficient across multiple areas,
from physics and chemistry to biology and earth sci-
ences, which is a vast amount of information to encode
and retrieve accurately.

• Training Data Limitations: The training data for
models like ChatGPT-4 consists of vast amounts of
text from the internet. While this includes a lot of
useful information, it also contains inaccuracies, am-
biguities, and a lack of detailed, context-specific ex-
planations necessary for solving complex problems.
Humans make mistakes and those mistakes can me
reproduced by language models.

• Inference and Reasoning: Language models are pri-
marily designed to predict the next word in a sequence
rather than to perform logical inference or reason
through multi-step problems. This makes it difficult
for them to handle problems that require deep reason-
ing and logical structuring. However very large model
can sometimes show emergent behavior. (Wei et al.,
2022)

There is a critical necessity for competent teaching assis-
tants in STEM programs. These are complex and challeng-
ing field, requiring students to grasp intricate concepts and
apply them practically. Effective teaching assistants play
a pivotal role in facilitating this learning process. They
provide additional support, clarify difficult topics, and of-
fer personalized guidance, which is essential for students
to succeed in such a demanding discipline. Ensuring the
availability of skilled teaching assistants can significantly
enhance the educational experience and outcomes for engi-
neering students. Teacher assistant can sometimes spends
hours to help a students debugs or solve hard multi-layered
physics problem. A large language model that excels at
helping students could alleviate some of the pressure and
workload on current teaching assistants and help when there
is a shortage of assistants.

2 Related Work

• Large Language models as Chatbots:. Modern lan-
guage models like LLaMA (Touvron et al., 2023) or



mistral (Jiang et al., 2023) are trained on vast amounts
of diverse text data, enabling them to grasp intricate
grammatical structures and semantics. Their impres-
sive generative abilities allow these models to en-
gage in human-like conversations, displaying exten-
sive knowledge on a variety of topics.

• LLM chatbot for education: The emergence of so-
phisticated large language models presents exciting
prospects for students and educators. Many students
now utilize these tools daily, and teachers are adapting
their teaching methods to integrate them effectively.
However, AI tools cannot completely replace human
teachers in their interactions with students. Addition-
ally, the use of AI brings potential risks, such as ethical
challenges arising from a lack of transparency or mis-
use. (Jeon and Lee, 2023) (Kasneci et al., 2023) It is
crucial to educate students about these risks, ensuring
they do not become overly reliant on AI and maintain
critical thinking. here is a concern that the overuse of
large language models (LLMs) could potentially hin-
der students’ development of critical reasoning skills.
While LLMs can provide quick and accurate answers,
relying too heavily on them may discourage students
from engaging deeply with the material, thinking criti-
cally, and developing their own problem-solving abili-
ties. It is crucial to balance the use of such technology
with traditional learning methods that promote active
thinking and reasoning to ensure that students con-
tinue to cultivate essential cognitive skills. Hovewer,
this problem already exist when the student have ac-
cesss to exercise solutions. (Grimaldi et al., 2019)
PLOS

• Fine tuning pretrained chatbots: Self-supervised
language models of increasing scale can handle some
tasks without prior examples (zero-shot) or with min-
imal examples (few-shot prompts). (Radford et al.,
2019) (Brown et al., 2020)However, their effective-
ness on downstream tasks and alignment with user
intentions can be greatly enhanced by fine-tuning on
datasets containing instructions and human-generated
completions. (Mishra et al., 2022)This process, known
as ’instruction-tuning,’ helps language models general-
ize to new instructions outside their training set, mak-
ing them more useful. (Chung et al., 2022) Despite the
success of instruction tuning, it’s often easier to gather
relative human judgments of response quality than to
collect expert demonstrations. Consequently, subse-
quent research has fine-tuned language models using
datasets of human preferences, which has improved
performance in areas such as translation, summariza-
tion, storytelling, and instruction-following. (Kreutzer
et al., 2018) (Stiennon et al., 2022) (Ouyang et al.,
2022)

• RL method for finetuning LLM: These approaches
typically begin by optimizing a neural network reward
function that aligns with the dataset of preferences
using models like the Bradley-Terry model. The lan-

guage model is then fine-tuned to maximize this re-
ward through reinforcement learning algorithms, such
as REINFORCE (Wu and Hu, 2018), proximal policy
optimization (PPO), or their variants. A related re-
search direction involves using language models fine-
tuned with human feedback to generate additional syn-
thetic preference data for specific attributes like safety,
guided by weak human supervision in the form of text
rubrics for annotations. This represents a convergence
of research on training language models with rein-
forcement learning for various objectives and general
methods for learning from human preferences. De-
spite the appeal of using relative human preferences,
fine-tuning large language models with reinforcement
learning poses significant practical challenges. This
work proposes a theoretically sound method for op-
timizing relative preferences without relying on rein-
forcement learning.

• Direct preference optimization: Outside the realm
of language, learning policies from preferences has
been explored in both bandit and reinforcement learn-
ing contexts. Various methods have been proposed,
such as contextual bandit learning, which uses prefer-
ences or rankings of actions instead of rewards. This
is known as a contextual dueling bandit (CDB) (Yue
et al., 2012). In scenarios lacking absolute rewards,
CDB theoretical analysis replaces the concept of an
optimal policy with a von Neumann winner, a pol-
icy that wins against any other policy at least 50% of
the time. However, in the CDB context, preference
labels are provided online, whereas learning from
human preferences typically involves a fixed batch
of offline preference-annotated action pairs. Simi-
larly, preference-based reinforcement learning (PbRL)
(Busa-Fekete et al., 2014) learns from binary prefer-
ences derived from an unknown ’scoring’ function
instead of rewards. Various algorithms for PbRL exist,
including those that can reuse off-policy preference
data, but they generally involve first estimating the
latent scoring function (the reward model) and then
optimizing it. Instead, we present a single-stage policy
learning approach that directly optimizes a policy to
meet the preferences, which is called Direct prefrence
based optimization(DPO)(Rafailov et al., 2023).

3 Approach

3.1 recap

In order to create our teaching assistant language model,
we divided the task into three steps. First, we collected data
to train our language models. Next, we trained the model
using Direct Preference Optimization (DPO). Additionally,
we specialized it to provide highly accurate single-letter an-
swers for multiple-choice questions. Finally, we expanded
our model’s capabilities to retrieve information from docu-
ments as well as making it more compact. In this section,
we introduce our model as well as our training pipeline.

https://www.mdpi.com/journal/education/special_issues/learning_environments_on_student_outcomes


3.2 Model : unsloth/zephyr-sft

This model is a fine-tuned version of mistralai/Mistral-7B-
v0.1 on the HuggingFaceH4/ultrachat_200k dataset. The
Mistral-7B-v0.1 Large Language Model (LLM) is a pre-
trained generative text model with 7 billion parameters.
Mistral-7B-v0.1 outperforms Llama 2 13B on all bench-
marks we tested. For full details of this model please read
the paper (Jiang et al., 2023) and the release blog post.

We chosed this model because it is decent can be trained
faster using unsloth pipeline. Unsloth. Unsloth make faster
by manually deriving all compute heavy maths steps and
handwriting GPU kernels, unsloth can magically make
training faster without any hardware changes. More infor-
mation on github

3.3 DPO Training

For DPO training we use the DPO trainer from trl, more on
DPOTrainerGithub

We also use Parameter-Efficient Fine-Tuning (PEFT) In-
stead of fine-tuning all the parameters of a large pre-trained
model, PEFT methods focus on adjusting a small subset of
parameters. This significantly reduces the computational
resources and time required for fine-tuning. By updating
fewer parameters, the memory footprint is reduced, mak-
ing it feasible to fine-tune large models on hardware with
limited memory. It uses adapters, small trainable modules
(adapters) between layers of the pre-trained model. During
fine-tuning, only these adapter modules are trained, while
the rest of the model parameters remain frozen. It also
use linear algebra technics such as Low-Rank Adaptation
(LoRA) which decomposes the weight updates into low-
rank matrices to reduce the number of parameters that need
to be updated(Hu et al., 2021).

In essence, Direct Preference Optimization aims to make
decisions or predictions that align closely with what is
actually preferred, using direct data on those preferences
to guide the process. The data include a chosen text that
represent the preferred text over a rejected text. Driven
by the complexities of employing reinforcement learning
algorithms on extensive tasks, like fine-tuning language
models, DPO is a straightforward method for policy opti-
mization based directly on preferences. Unlike traditional
RLHF techniques that first learn a reward model and then
optimize it using reinforcement learning, our approach uti-
lizes a specific parameterization of the reward model. This
unique parameterization allows for the extraction of the
optimal policy in a closed form, eliminating the need for
an RL training loop. (Rafailov et al., 2023)

To gain a mechanistic understanding of DPO, it is benefi-
cial to examine the gradient of the loss function LDPO. The
gradient with respect to the parameters θ can be expressed
as:

∇θLDPO(πθ;πref)

= −βE(x,yw,yl)∼D [σ(r̂θ(x, yl)− r̂θ(x, yw))]

=

 ∇θ log π(yw|x)︸ ︷︷ ︸
increase likelihood of yw

− ∇θ log π(yl|x)︸ ︷︷ ︸
decrease likelihood of yl




where

r̂θ(x, y) = β log
πθ(y|x)
πref(y|x)

represents the reward implicitly defined by the language
model πθ and the reference model πref . Intuitively, the gra-
dient of the loss function LDPO serves to increase the likeli-
hood of the preferred completions yw while decreasing the
likelihood of the dispreferred completions yl. Notably, the
examples are weighted by the extent to which the implicit
reward model r̂θ rates the dispreferred completions higher,
scaled by β. This effectively measures how incorrectly the
implicit reward model orders the completions, taking into
account the strength of the KL constraint. This weighting
is crucial, as a simple version of this method without the
weighting coefficient can lead to the degeneration of the
language model.

DPO circumvents the need to explicitly fit a reward func-
tion and avoids the complexity of performing reinforcement
learning to learn the policy by employing a single maxi-
mum likelihood objective. The optimization objective in
Equation 5 is akin to a Bradley-Terry model, with a reward
parameterization defined as

r∗(x, y) = β log
π∗
θ(y | x)

πref(y | x)
This allows us to optimize our parametric model πθ in

a manner equivalent to the reward model optimization in
Equation 2, facilitated by a change of variables, which rep-
resents the reward implicitly defined by the language model
πθ and the reference model πref (discussed further in Sec-
tion 5). Intuitively, the gradient of the loss function LDPO
serves to increase the likelihood of the preferred comple-
tions yw while decreasing the likelihood of the dispreferred
completions yl. Notably, the examples are weighted by the
extent to which the implicit reward model r̂θ rates the dis-
preferred completions higher, scaled by β. This effectively
measures how incorrectly the implicit reward model orders
the completions, taking into account the strength of the KL
constraint. Our experiments indicate the significance of
this weighting, as a simple version of this method without
the weighting coefficient can lead to the degeneration of
the language model. (Rafailov et al., 2023) (Tunstall et al.,
2023)

Our goal is for the model to deliver not just accurate
responses, but also clear, step-by-step explanations. This is
why, in our datasets, in the "chosen" section, we provide a
thorough answer that is detailed, easy to comprehend, and
educational. In the "rejected" section, we include answers
that might be correct or somewhat incorrect but are missing

https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://arxiv.org/abs/2310.06825
https://mistral.ai/news/announcing-mistral-7b/
https://unsloth.ai/
https://github.com/unslothai/unsloth
https://huggingface.co/docs/trl/main/en/dpo_trainer
https://github.com/huggingface/trl/blob/main/trl/trainer/dpo_trainer.py#L68


adequate explanatory details. For MCQA data, we put
golden answer in "chosen" section, where as wrong answer
in "rejected" section.

Training is done mainly on google colab, we trained
other models like distillgpt2 on the scitas cluster but they
were less performants.

3.4 Generation
3.4.1 Generation to the learning students
For generating an answer to the learning students we use
the generating function with standard parameters:

• input_ids
The input token IDs.

• max_new_token
The maximum new token of the generated text.

• num_return_sequences = 1
The number of generated sequences to return. Here, it
is set to 1.

• no_repeat_ngram_size = 2
This parameter ensures that no 2-grams (pairs of to-
kens) are repeated in the generated text, promoting
diversity.

• early_stopping = True
This parameter stops the generation early if an end-
of-sequence token is generated before reaching the
max_new_token.

The function then decodes and returns the generated text
as a string. The no repeat n-grams is crucial otherwise
the model will keep repeating the same thing. We could
improve this by using n-beans (checkking more that one
answers in parrallel) and tweaking the temperature. ("tem-
perature" is a hyperparameter that controls the randomness
of predictions made by the model.)

3.4.2 Generation for mcqa
Initially, we considered generating the MCQA answer by
outputting the token (A, B, C, D) with the highest proba-
bility based on token ID on last token of generated output.
However, we ultimately decided to use the generated text
instead, as it occasionally yielded higher accuracy during
evaluation. This could be because it is predicting token
with space like "A " instead of "A" or other reasons. We
generate a response and we use a regular expression to
search for the pattern "Answer: " followed by a letter (A,
B, C, or D) in the generated text.

3.4.3 Generation for mcqa, using RAG
To implement RAG(Retrieval Augmented Generation), we
first gathered database relevent for STEM subjects, as in
below. Then we devided this database into chunck of
size 1000, and embedded using huggingface embedding
with model name’sentence-transformers/all-mpnet-base-
v2’. Then we load them into FAISS vector database. Then
we queried the database to retrieve relevant top-4 relevant
chunks, and concatanate context in front of questions. Then
we generated mcqa answers as above.

3.5 Quantization

To efficiently manage the computational and memory
requirements of the unsloth/zephyr-sft model, which is
approximately 30GB in size (fullsize), we employed 4-
bit quantization. This technique involves representing
the model’s weights using 4 bits, significantly reducing
the model’s memory footprint. By leveraging Hugging
Face’s and AutoGPTQ support for 4-bit quantization, we
achieved a more manageable model size without substantial
loss in performance, facilitating deployment on resource-
constrained hardware. GPTQ is way to quantize already
finetuned moel. (Frantar et al., 2022) . This is the solution
we went for, even though many quantization methods are
available, each with its unique advantages and disadvan-
tages. (Dettmers et al., 2022) (Xiao et al., 2022) (Chavan
et al., 2024) Additionally, 2-bit methods using values like
-1, 0, and 1 are also emerging. (Ma et al., 2024)

4 Experiments

4.1 Data

4.1.1 Open question dataset

Those dataset are for DPO training to train our model to be
a good teaching assistant. We want our model to provide
not only accurate answers but also clear, step-by-step expla-
nations. In the "chosen" entry, we include a comprehensive
answer that is detailed, easy to understand, and educational.
In the "rejected" entry, we place answers that might be
correct or slightly incorrect but lack sufficient explanatory
detail.

In addition to student data provided, we also collected
open source preference data, but meticuolsy chose STEM
related ones. Also we tried to minimize unbalance of sub-
jects, so that for instnace most data are just about mathe-
matics. In total, we had 23584 preference pairs.

• student data:
This is dataset generated by students using chatGPT
API on questions from EPFL courses. Both better
and worse answeres were generated, and annotated
by each students. It contains 12955 preference pair
from 730 distinct prompts. However, it might contains
some mistakes.

• Preference pair dataset in Huggingface:
In addition to student data, we used opensource pref-
erence pair related to STEM.

• distilabel-math-preference-dpo: It consists 2418
preference pair where prompt was highschool level
math questions without needing much calculation.

• OpenHermesPreferences: We chose preference pair
from just 2 sources, 2000 pairs from Camel AI and
2000 pairs from glaive-code-assist. Camel AI has
subject mostly related to STEM ranging from math,
physics, chemistry, biology, coding, but also had some
social science. glaive-code-assist was about coding.



• distilabel-capybara-dpo-7k-binarized: We only
choose pairs from Theorem QA, which has 574 prefer-
ence pair about college level mathematics.

• Preference pair generated using gold answer and
prompt dataset We also collected preference pair
where we get prompt and gold answer from open
source dataset, and we generate worse answer using
chatGPT API.

• camel-AI/physics: We thought there is not much ad-
ditional data on physics, which has big portion of
STEM university courses, so we collected another
2000 pairs. These questions was about serious college
level physics questions.

• STEM-AI-mtl/Electrical-engineering: This consits
1131 preference pair of college level electrical engi-
neering questions.

• garage-bAInd/Open-Platypus: This consits 15,584
gold answer and prompt. We only choose data from
scibench and ARB which has 320 pairs broadely about
college level STEM subjects.

4.1.2 MCQADataset
In addition to 11114 pairs of MCQA pairs, we also used
additional open source data. In total, we used 23101 pairs
of MCQA pairs. For additional data that has only golden
answer, we selected randomly between A D that is not
answer and put is as rejected answer.

• student data: This is dataset generated by students
using chatGPT API on questions from EPFL courses.
Both better and worse answers were generated, and
annotated by each students. It containes 11114 pairs
of MCQA answers.

• cais/mmlu: It consists questions relevent from high-
school college level courses. We only chose STEM
related subjects among those. We used 4200 pairs
from this dataset. We randomly assigned choice that
is not given answer as rejected answer.

• allenai/ai2_arc: It consists questions relevent from
various STEM subjects. WE used the whole dataset,
which consits two subjects [’ARC-Challenge’, ’ARC-
Easy’], in total 7787 pairs. We randomly assigned
choice that is not given answer as rejected answer.

4.1.3 RAG Database
By investigating student MCQ dataset, we plotted subject
each question in. We used chatGPT API to get one subject
for one question. By investigating frequency of each sub-
ject, we noticed subject such as Cryptography, Statistics,
Machine learning, Cyber Security, Linguistics(NLP) are
important. We gathered various open source text data about
these subjects. The database was in .jsonl file with 0.12gb
in size.

• Textbook: We gathered open source textbook about
these subjects. On total 60 textbooks were gathered.
These include openstax textbooks.

Figure 1: Top 10 Most Frequent Subjects

• Lecture Notes: We gathered 12 different lecture notes,
mostly around modern computer science courses such
as Natural Language Processing.

• Wiki corpus: We gathered "rag-datasets/rag-mini-
wikipedia", and "rag-datasets/rag-mini-bioasq" from
Hugginface.

4.2 Evaluation method
• Open questions: Our primary evaluation method for

open questions is accuracy of selecting prefered an-
swer among pairs. This is done by calculating log
probability of each answer, from same prompt.

We also report 3 different types of evaluation metric,
BERT score, LLM based score(GEval), and human
based preference. We choose 20 prompt and gold
answer from sciBENCH dataset, and compare it with
generated answer. For 20 prompt left for evaluation in
student dataset, since it doesn’t have gold answer we
only report human based preference.

• MCQA questions:For mcqa questions, we directly
calculated accuracy comparing with golden answer.
We compare base models, DPO-finetuned model, DPO
+ RAG model, and DPO + Quantization model.

4.3 Baselines
We used distill-gpt2, and untrained unsloth/zephyr-sft as
baseline. We chose distill-gpt2 to see effect of scale, and
untrained unsloth/zephyr-sft to show the effect of finetuning
and RAG.

4.4 Experimental details
• LoRA parameters: We trained with LoRA adapter,

and parameter for LoRA was r = 64, α = 64. We saved
our adapter for each epoch, so that we can evaluate
our model on each epoch, since LoRA finetuning is
vulnerable to overfitting.



• other hyperparameters: optimizer=adamw8bit,
lr=5e-6, epochs=3, batch size=2, gradient accumu-
lation steps = 4

• data split: we left pairs from 20 different
prompt(About 350 pairs) of open questions. For MCQ
questions we used 356 paris from mcqa_example.json
provided by TAs. These test sets are used to calculate
accuracy for choosing prefered pair for open questions,
and choosing correct answer for MCQA. Beside these
testsets, we also had 100 different high quality prompt
and gold answer from scibench dataset, so that we
can compare quality of open generated answer with
golden answer using BERT score, GEval score.

4.5 Results

4.5.1 Open question DPO results
• Learning Curve:

Figure 2: Training Loss

• Accuracy of choosing prefered pair:

base Epoch 1 Epoch 2 Epoch 3
Accuracy 0.52 0.58 0.60 0.57

Table 1: BERT Scores across Different Epochs.

Here base model refers to untrained zephyr-sft model.
BERT score is calculated between generated answer
and golden answer for 350 different test pairs.

• Quality of generation: Human based preference

We matched 2 different schemes, one for generation
of original model versus generation of model DPO
trained on 2 epoch, and another for generation of
model DPO trained on 2 epoch versus generation from
3 epochs. Four group members chose which one of
two answer is better. epoch 2 model was best on per-
formance.

base Epoch 2 Epoch3
base vs epoch 2 14.6% 85.4%

epoch 2 vs epoch 3 60.8% 39.2%

Table 2: Human preference percentage

• Quality of generation: Comparing golden answer
from scibench

Here we report BERT score between generated answer
and golden answer from scibench dataset. See Table 3
below.

base Epoch 1 Epoch 2 Epoch 3
f1 0.43 0.77 0.82 0.82

precision 0.46 0.77 0.82 0.82
recall 0.41 0.77 0.82 0.83

Table 3: BERT Scores across Different Epochs. Here base model
referes to untrained zephyr-sft model. BERT score is calculated
between generated answer and golden answer for 350 different
test pairs.

We also report LLM based evaluation metric, and we
specificlaly used openAI API key to use GEval. For
correctness, we gave criteria="Determine whether the
actual output is factually correct based on the expected
output." For completeness, we gave "how thoroughly
the actual output answers the question in the input
prompt". For coherence, we gave "the collective qual-
ity of all sentences in the actual output". For instruc-
tiveness, we gave "how kindly the model provides
instructions to the user in the actual output". Scores
were scaled from 0 to 1. See Table 4 below.

base Epoch 1 Epoch 2 Epoch 3
correctness 0.01 0.03 0.05 0.05

completeness 0.13 0.16 0.21 0.22
coherence 0.11 0.19 0.22 0.19
instructive 0.12 0.30 0.29 0.29

Table 4: GEval Scores across Different Epochs. Scores are
normalized between [0,1], where larger score means better.

• Addendum: Distill GPT-2

Besdie training zephyr-sft with 7B parameter, we
also trained Distill GPT-2 seperately, and we
report quality of generation here. BElow is
BLEURT (https://github.com/google-research/bleurt)
score. BLEURT is an evaluation metric for Natural
Language Generation. It takes a pair of sentences as
input, a reference and a candidate, and returns a score
that indicates to what extent the candidate is fluent and
conveys the meaning of the reference. It is comparable
to BLEU, BERTScore, and COMET from Assignment
3. 1000 sentences are generated and compared to the
reference. We are not doing translation but a good
answer should still conveys some of the meaning of
the reference.

BLEURT base_GPT2 trained GPT2
students -0.9893 -0.7856
hermes -0.9615 -0.8444

argilla_math -0.8227 -0.7681

Table 5: Scores for Base Model and Trained Model



4.5.2 MCQA results
See the table 6 below. We used 356 pairs from
mcqa_example.jsonl provided by TA as test set. There
were 3 different subjects in this dataset, and since accuracy
among subjects were significantly different, we report them
seperately. We report untrained model as base model, and
model just trained on DPO, model trained on DPO and
using RAG, and model trained on DPO but quantied.

base DPO DPO+RAG DPO+Q
ML 0.37 0.40 0.42 0.40
Bio 0.62 0.63 0.63 0.62

Chem 0.53 0.56 0.58 0.55

Table 6: MCQ Accuracy for different models for different sub-
jects. Here base model referes to untrained zephyr-seft.Q refers
to 4-bit quantized model.

4.5.3 Size change due to Quantization
We report model size in memory before and after quantiza-
tion. See Table 7 below.

Before Q. After Q.
size 29200MB 4948MB

Table 7: Model size in memory of before/after Quantization.

5 Analysis

5.1 Open questions
• Effect of overfitting: Note that accuracy of choosing

prefered pair increased from untrained to epoch 1 sig-
nificantly. Then for epoch 2 accuracy increase slightly,
and then for epoch 3 it decrased slightly. This could
be think of overfitting, where our dataset had only 24k
diffent pairs, and LoRa finetuning is also vulnerable in
overfitting. If we look at generation, we can see that
for epoch 3 it starts to repeat unreasonalbe formulas
and equations which it saw during traiing. We used
epoch 2 model as our best model.

• Choice of evaluation metric: OUr quality of genera-
tion was not satisfactory, as you can see from GEval
score. Correctness was always below 0.05(1 scaled
to be ground truth and 0 to be worse). This could
be due to fundamental limit of LoRA finetuning us-
ing small dataset by DPO, and also we are using 7B
model, which is capable of everyday conversation, but
not capable of reasoining with complicated logic and
requiring mutliple steps. Thus in this case we believe
most critical evaluation metric is choosing prefered
answer along pair, which we reported in "Accuracy of
choosing prefered pair"

5.2 MCQA questions
• Performance difference among subjects: There was

significant difference of mcqa accuracy among sub-
jects. For subject requiring more logic and complex
reasoning, performance was worse. We can see that

for subject like machine learnining, accruacy is rela-
tively low with/without DPO training/RAG. And also
accuracy was relatively high with/without DPO train-
ing/RAG. For instnace, for biology question, untrained
model was already getting high performance and fine-
tuning and adding database didn’t changed perfor-
mance much.

• RAG being detrimental on subjects outside
database: Although we tried to add as many re-
sources in RAG database it was still 0.12GB, and
there were questions which are irrevalent of any of
data in database. In this case, since RAG is retrieving
wrong context, it could actually lead to wrong answer,
which it got it right without RAG.

Figure 3: Example of RAG being beneficial

Figure 4: Example of RAG being detrimental

• Quantization leading similair performance: We can
see that quantzation made model size much smaller,
yet mcqa accuracy was similar to before.

6 Ethical considerations

6.1 Adapting to different languages
To adapt to different languages, we can use Sparse Fine-
Tuning method (SFT) for each language. This method
only trains small subset of whole parameter in model for
different languages. Since we usedLoRA finetuning for
task, finetuning to other language could be done following
this guideline (Chen et al., 2024). We will compose task
sub-network and language specific sub-network. For in-
stance, if we want to adapt to Urdu, we could finetune our
urdu specific sub-network using Wikipedia text on Urdu
using MLM, then compose this subnetwork with task sub-
network.

6.2 Adapting to signed languages:
We could combine our model with signed language (video)
to English text translator (Yin et al., 2021). From signed
language (video) to text we could use (Selvaraj et al., 2022),
and from text to signed language we could use (Baltatzis



et al., 2024) (data is open-sourced, but we need to train
diffusion model).

7 Conclusion

In this project, our objective was to train an AI tutor special-
ized in the course content at EPFL, aiming to assist students
in their learning by providing a language model capable
of generating answers to questions in science, technology,
computer sciences, engineering, and mathematics. Our
approach involved three key steps: data collection, model
training using Direct Preference Optimization (DPO), and
enhancing the model’s ability to retrieve, as well as still
being accurate yet being smaller in size.

Our main findings reveal that the model, after being
trained with DPO, showed improvement picking out pref-
ered answer from pairs for open questions, and getting
accurate answer for MCQA. Furthermore, adding informa-
tion retrieval from database slightly imporve performance.
In addition, by quantizing we had model 6 times smaller
yet achieveing similar performance.

There was still limitations to our problem. First is that
performance imporvement wasn’t significant. Also despite
accuray of picking better answer improved, quality of gen-
erated answer itself wasn’t satisfactory. These could be due
to many reasons, our model was 7B in the first place and
dataset was only 24k, 23k for open and MCQ questions.
We didn’t finetuned the whole model but only finetuned
adapter tensors using LoRa.

Future work could explore scaling up the model and
datasets, incorporating more advanced reasoning and logic
capabilities, and adapting the model to different languages
and signed languages. These steps could provide deeper
insights and further validate our findings, significantly ad-
vancing our understanding and contributing to the practical
applications of AI in education. By addressing these areas,
future studies could enhance the educational experience
and outcomes for students, ensuring a more effective and
accessible AI tutor.
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If you wish, you can include an appendix, which should be
part of the main PDF, and does not count towards the page
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examples, figures, results, visualizations, etc., that you
couldn’t fit into the main paper. However, your grader does
not have to read your appendix, and you should assume
that you will be graded based on the content of the main
part of your paper only.

Here, you can find some generation of the model from
milestone 2 :

Question

: Consider the following contains function defined on It-
erable (in particular, it accepts both Vector and List). def
contains[A](l: Iterable[A], elem: A): Boolean = val n =
l.size if n <= 5 then for i <- l do if i == elem then return
true false else val (p0, p1) = parallel( contains(l.take(n / 2),
elem), contains(l.drop(n / 2), elem) ) p0 || p1 Let nn be the
size of l. Assume that drop and take run in Θ(1) on Vector
and Θ(n) on List. What is the asymptotic depth of contains
if it is called on a List?

Answer

: The function contains is defined in terms of parallel,
which is a higher-order function that takes two arguments
and returns a tuple of their results. In this case, contains
is splitting the input list into two halves and calling itself
recursively on each half. The results of these recursive
calls are then combined using the || operator, which is short-
circuit or (in this case) parallel evaluation.

If contains is called on a List, the drop operation will run
in Θ(n) time, where n is the size of the list. This is because
drop iterates over the list and returns a new list without the
first n/2 elements. The take operation will also run in Θ(n)
time, as it returns the first n/2 elements of the list.

The recursive calls to contains will continue until the
size of the list is at most 5. At this point, the function will
perform a linear search of the remaining elements in the
list. The linear search will run in Θ(5) time, or Θ(1) time.

The total time complexity of contains on a List is there-
fore Θ(n) for the drop and take operations, plus Θ(1) for
the linear search when the list size is at most 5. There-
fore, the asymptotic depth of contains on a List is Θ(log n),
where n is the size of the list.

In other words, the function will split the list in half
until the size of each half is at most 5, at which point it
will perform a linear search of the remaining elements.
This process will continue until the size of the list is 1
or 0, at which point the function will return true or false
accordingly. The maximum depth of this recursion is log n,
where n is the size of the list.

(with correction for latex):

Question

We have a collection of rectangles in a plane, whose sides
are aligned with the coordinate axes. Each rectangle is
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represented by its lower left corner (x1, y1) and its upper
right corner (x2, y2). All coordinates are of type Long.
We require x1 ≤ x2 and y1 ≤ y2. Define a case class
Rectangle storing two corners.

Write a program that takes a list of rectangles as input
and returns the number of pairs of non-overlapping rectan-
gles. Two rectangles overlap if they share any point except
for their common boundary.

Answer

case class Rectangle(lowerLeft: (Long, Long),
upperRight: (Long, Long)) {
require(lowerLeft._1 <= upperRight._1
&& lowerLeft._2 <= upperRight._2)

}

object NonOverlappingRectangles {
def count(rectangles: List[Rectangle]): Int = {

val rectanglesSet = rectangles.toSet
rectanglesSet.size

}
}

Explanation

• We define a case class Rectangle to store the lower
left and upper right corners of each rectangle. We
require that the x-coordinate of the upper right corner
is greater than or equal to the x-coordinate of the
lower left corner, and the y-coordinate of the upper
right corner is greater than or equal to the y-coordinate
of the lower left corner.

• We define a function count that takes a list of
Rectangle objects as input and returns the number of
non-overlapping rectangles.

• We convert the input list of Rectangle objects to a set
to remove duplicates and ensure that each rectangle is
counted only once.

• We return the size of the set, which is the number of
non-overlapping rectangles.

Example Usage

val rectangles = List(
Rectangle((1, 1), (4, 4)),
Rectangle((2, 2), (5, 5)),
Rectangle((3, 3), (6, 6))

)

val nonOverlappingRectangles =
NonOverlappingRectangles.count(rectangles)

println(s"Number of non-overlapping
rectangles: $nonOverlappingRectangles")

Output

Number of non-overlapping rectangles: 2

In this example, the rectangles (1, 1)−(4, 4) and (3, 3)−
(6, 6) are non-overlapping, while the rectangle (2, 2) −
(5, 5) overlaps with both of them. Therefore, the output is
2.

Question:

Which of the following scheduler policies are preemptive?
Options: A. FIFO (First In, First Out) B. SJF (Shortest

Job First) C. STCF (Shortest Time to Completion First)
D. RR (Round Robin) Question: Which of the following
scheduler policies are preemptive?

Options: A. FIFO (First In, First Out) B. SJF (Shortest
Job First) C. STCF (Shortest Time to Completion First) D.
RR (Round Robin)

Answer:

A, B, and C are preemptive scheduler policies as they allow
a higher priority process to preempt a running process.
FIFO is a non-preemptive scheduler policy as it does not
allow a process to be preempted by a higher priority process.
Round Robin (RR) is a non-preemptive scheduler policy
as it does not allow a process to be preempted by a higher
priority process.

Explanation: Preemptive scheduler policies allow a
higher priority process to preempt a running process, while
non-preemptive scheduler policies do not allow a process to
be preempted by a higher priority process. FIFO (First In,
First Out) is a non-preemptive scheduler policy as it does
not allow a process to be preempted by a higher priority
process. SJF (Shortest Job First) and STCF (Shortest Time
to Completion First) are preemptive scheduler policies as
they allow a higher priority process to preempt a running
process. Round Robin (RR) is a non-preemptive scheduler
policy as it does not allow a process to be preempted by a
higher priority process.

Preemptive scheduler policies are useful in real-time
systems where processes with higher priority need to be
executed immediately. Non-preemptive scheduler policies
are useful in general-purpose systems where processes are
executed in the order they arrive.

In summary, A, B, and C are preemptive scheduler poli-
cies, while D is a non-preemptive scheduler policy.
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