
QM9 Molecular Skeleton Generation
Exploiting a Simpler Yet Powerful Denoiser Architecture Comparable to Graph Transformers

https://github.com/gusah1104/networkML_project_QM9

Berta Céspedes Sarrias Hyunmo Kang

Abstract—This study evaluates a simplified denoising process
as an alternative to the DiGress model’s graph transformer (GT)
based denoiser [1]. Despite the GT’s effectiveness, it suffers from
limited interpretability and scalability. Our method utilizes a
message-passing algorithm to aggregate node features and employs
a multi-layer perceptron to predict edge probabilities. We find the
node aggregating layer is important for performance. Further-
more, our experiments on the QM9 dataset for molecular skeleton
generation reveal that our simplified denoiser achieves comparable
results to those of the graph transformer-based denoiser, when
enhanced with additional spectral and cycle features. Despite not
critical in this task, modeling diffusion with marginal noise in the
forward process results in slightly better performance.

I. INTRODUCTION

Graph-based generative models has become an active area
of research in various domains. Particularly, they have attracted
considerable attention in the biomedical field, in areas such as
drug discovery [2]–[6], and medical imaging [7], [8].

A. State-of-the-art

Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs) are widely used for modeling complex
data. GANs use a generator to create synthetic graphs and a
discriminator to distinguish them from real data, while VAEs
use an encoder to map data into a latent space and a decoder
to reconstruct it. Both face issues with scalability, oversimplifi-
cation, and training instability.

GraphRNN models graphs sequentially using two RNNs:
one for nodes and another for edges. However, GraphRNN
can struggle with long-term dependencies, leading to potential
issues in generating large and complex graphs. It may also
face difficulties in capturing intricate graph structures due to
its sequential nature.

Recent advances have highlighted diffusion models, which
address the limitations of GANs, VAEs, and GraphRNN. Diffu-
sion models add noise to data in the forward process and remove
it in the reverse process, generating accurate new samples. These
models offer superior scalability, performance, and training
stability, effectively capturing complex data patterns [9], [10].

Diffusion models have achieved success in graph generation,
which is the task at hand in this project. There has been
promising results in areas such as molecule generation [5],
social network analysis [11], and recommendation systems [12].

Continuous diffusion models have been implemented, where
graphs are embedded in a continuous space, and Gaussian noise
is added to the node features and graph adjacency matrix. This
decreases graph sparsity, and capturing the structural properties
of the data, such as connectivity, becomes more challenging in
the denoising stage.

B. Discrete diffusion for graph:

This project implements discrete diffusion following the Di-
Gress implementation [1], [13], which overcomes the limitations
of the continuous diffusion framework. Instead of Gaussian, the
noise model is Markovian, where each successive graph state
is derived independently. Iteratively, noise is added to an initial
graph G0 until reaching a fully corrupted graph GT , thus obtain-
ing a set of graphs

{
G0, . . . , GT

}
. Our implementation diffuses

each edge separately, according the the transition matrix:[
Qt

E

]
ij
= q

(
et = j | et−1 = i

)
(1)

GT is obtained by sampling from a categorical distribution
defined by:

q
(
Gt | Gt−1

)
= Et−1Qt

E and q
(
Gt | G

)
= EQ

t

E (2)

where Q
t

E = Q1
E . . .Qt

E . Note that we can also improve
sample quality by preserving the marginal distributions of edge
types during diffusion, to maintain sparsity. Marginal transitions
have shown to improve over uniform transitions experimentally.
[1]. The definition of the transition matrix can be seen below.

Qt
E = αtI+ βt1m′

E (3)

where αt follows the cosine schedule αt =
cos (0.5π(t/(T + s))/(1 + s))

2 and transitions from 1 to
0 with time t, and is used as a coefficient to the identity
matrix. Moreover, β

t
= 1 − αt, thus transitioning from 0

to 1. Then, 1 ∈ {1}a, and m′
E ∈ Rb is a transposed row

vector of marginal distributions of edge types. Thus, the
probability of transitioning from state i to state j, which in
the case of unattributed graphs will be having an existing
edge or not, is proportional to the marginal probability of
one of these categories in the training set. This is significant
because preserving the marginal distributions of node and edge
types during diffusion allows graph characteristics such as
connectivity and graph topology to be maintained.

As previously described, the second stage of the process
leverages the denoising neural network, for which multiple
implementations are available. In DiGress, a graph transformer
network is trained to reverse the diffusion process. This method
first aggregates node features using self-attention, while edges
are processed using a Feature-wise Linear Modulation (FiLM)
layer. Then, the architecture iteratively applies this graph trans-
former layer coupled with a Multi-layer Perceptron (MLP) layer.
Despite being powerful, this method lacks interpretibility and
scalibity. We propose a simpler denoiser architecture where
node attributes are aggregated using a message passing algo-
rithm, followed by an MLP layer to predict edge probability.



C. Problem Formulation:

In the evolving field of graph-based neural networks, achiev-
ing optimal peformance with simpler models remains essen-
tial. For this study, all node and edge features have been
removed from a subset of the QM9 dataset. The aim lies on
investigating the effectiveness of graph transformers and other
architectures. The following questions are posed in the context
of the unattributed QM9 dataset.

• Can similar performance to graph transformers be achieved
using a simpler model?

• Which components of the denoiser -specifically, the node
attribute layer or the edge predictions layer- are critical to
achieve this performance?

• What additional features can be added to enhance the
model’s performance and expressivity?

• Does the injection of marginal noise in this simpler setting
yield better results?

II. METHODS

A. Dataset

The dataset employed is QM9 [14], a widely used bench-
mark for prediction and modeling of molecular properties and
structure. A subset of 345 small organic molecules is utilized,
where all graphs have 9 nodes. All node and edge features are
removed for this study. The training set is composed of 70% of
the data (250 graphs), while 30% (95 graphs) is separated for
testing. 5 different seeds are used to ensure robustness.

B. Forward diffusion process - Noise injection:

Two different noise distributions are tested. Firstly, the model
is trained adding uniform noise. Thus, the transition probability
is [0.5,0.5], for existing and non-exisiting edges respectively.
Secondly, marginal noise is calculated from the edge distribution
in the training set, and the transition matrix was changed to
approximately [0.7,0.3], depending on the choice of training
set.

C. Backward diffusion process - Choice of denoising model:

Two pipelines are employed for the backward process.
• Graph Transformers: This approach improves upon the

above mentioned, by utilizing edges directly, and thus
avoiding the limitation of relying solely on node features.
The implementation is as described by [1].

Fig. 1: Self attention module in graph transformer. Figure
adopted from [1].

• Simple Denoiser: This model aggregates node features
with a message passing algorithm, and then predicts edge
probability based on the features of node pairs, using
a multi-layer perceptron. The architectures compared are
Graph Attention Network (GAT), which is deemed to be
the most powerful, Graph Isomorphism Network (GIN),
and Graph Convolutional Network (GCN).

D. Additional Features Added:

• Cycles: Message passing algorithm cannot capture cycles
(closed loop paths that start and end at the same vertex
without repeating any edges or vertices). For this reason,
we added the number of k-cycles for each node prior to
message passing. [1] For each node, we calculated its
involvement in cycles ranging from three to five edges.
Additionally, at the graph level, we computed the presence
of cycles spanning from three to six edges.

• Eigenfeatures: They are derived from the spectral de-
composition of a graph´s adjacency matrix, and capture
structural properties of the graph. [1] We begin by cal-
culating graph-level features related to the eigenvalues of
the graph Laplacian, such as the number of connected
components (indicated by the multiplicity of eigenvalue 0)
and the first five nonzero eigenvalues. Then, we put node-
level features based on the graph eigenvectors, including
an estimation of the largest connected component using the
eigenvectors corresponding to eigenvalue 0 and the first
two eigenvectors associated with nonzero eigenvalues.

E. Evaluation of generated graphs

The Erdös–Rényi (ER) model is used as a baseline model
to compare with our discrete diffusion model. The following
metrics are used to test performance.

• Clustering Coefficient & Degree: We calculated MMD
of clustering coefficient and degrees. Note that we report
ratio of MMD between train/generated and train/test.

• Eigenvalue distribution: We conducted a Kolmogorov-
Smirnov test to compare the distributions of the top 5
eigenvalues between generated set and test set.

• Validity: A validity function is defined according to 3
criteria. First, connected components should be 1, second,
the edge degree should be bounded to 4, and third, the
generated graph should be a planar graph. We report the
ratio of valid graphs out of the total number of generated
graph.

• Uniqueness: This metric measures the proportion of dis-
tinct, non-isomorphic graphs out of the set of generated
graphs. This ensures that graphs do not share the exact
same structure or connectivity pattern.

• Novelty: We report the ratio of novel graphs, i.e. graphs
that are not in the training set out of all the generated
graphs.

F. Training Scheme:

The cross-entropy loss function is used to measure the
discrepancy between the predicted edges and the true edges.
Optimization is carried out using the Adam optimizer. With no
additional features the learning rate is set to 1 × 10−4. When
using additional features the learning rate is set to 1 × 10−3.
We generated 100 graphs in each case after training.



III. RESULTS: SIMPLE DENOISER MODEL

A. No additional node features

• Learning Curve: In this setting, no additional node fea-
tures are given. Node attributes are inferred exclusively
from the adjacency matrix, using 3 different types of
GNNs. Following this, a MLP layer is implemented to to
predict edge probability between nodes.

Fig. 2: Loss trend over epochs using uniform noise (left) and
marginal noise (right) for forward process. 3 different message
passing GNNs are used to aggregate node attributes. From top
to bottom: GIN, GCN and GAT. Results are averaged over 5
different seeds, and line width shows standard deviation from
the mean. Note that for all three cases, training loss does not
get smaller than 0.11.

• Evaluation: See Table I

C.C.↓ Degree↓ E-value KS↓ Valid↑ Unique↑ Novel↑
ER 6.80 2.74 0.15 0.27 1.00 1.00

GCN Unif. 21.25 7.11 0.15 0.03 1.00 1.00
GIN Unif. 11.71 3.87 0.18 0.16 1.00 1.00
GAT Unif. 8.00 4.69 0.14 0.24 1.00 1.00

TABLE I: Evaluation for generated graphs with no features
added. ER is used as the graph generation baseline. C.C.
stands for clustering coefficient. For C.C and degree, the
MMD is shown. E-value KS stands for eigenvalue distribution
Kolmogorov-Smirnov statistics. For these three metrics, lower
values are best. For the rest, the greater the better.

It is important to note that further results not included in this
report demonstrate that changing the edge predicting layer from
MLP into a simple linear network does not result in a significant
change in the learning curve. Thus, the limitation in expressivity
resides in the node attribute layer rather than the MLP layer for
predicting edges. This motivates the use of additional features,
such as eigenfeatures, cycles, etc., prior to processing with a
GNN.

B. Adding eigenfeatures & cycles:

• Learning Curve: Cycle features and eigenfeatures are
added for the results in this section. Then, an MLP layer is
used to predict edge probability. Loss when training with
features is lower (0.09) than without (0.11) as seen in Fig
2 and Fig 3, respectively.

Fig. 3: Loss trend over epochs using uniform noise (left) and
marginal noise (right). Additional features added for backward
process: eigenfeatures, cycles. 3 different message passing
GNNs are used to aggregate node attributes. From top to
bottom: GIN, GCN and GAT. Results are averaged over 5
different seeds, and line width shows standard deviation from
the mean.

• Evaluation: See Table IV

C.C. Degree E-value KS Valid Unique Novel
ER 6.80 2.74 0.15 0.27 1.00 1.00
GIN 5.30 5.10 0.10 0.31 1.00 1.00

GIN marg 5.61 5.41 0.11 0.33 1.00 1.00
GCN 9.15 36.35 0.09 0.26 1.00 1.00

GCN marg 7.30 5.61 0.09 0.34 1.00 1.00
GAT 4.36 15.81 0.12 0.35 1.00 1.00

GAT marg 5.12 4.26 0.10 0.36 1.00 1.00

TABLE II: Evaluation metrics for generated graphs adding
eigenfeatures & cycles. Abbreviations and interpretation guide-
lines are provided in the caption of Table I. Note that by adding
additional features, simple denoiser model performed better than
erodos-reniyi model in terms of degree MMD, eigenvalue KS
score, validenss.

By incorporating eigenfeatures and cycles, not only training
loss decrease from 0.11 to 0.09, but also evaluation measure
for generated graphs imporved. For instance, without adding
features simple model was worse than Erdos-reniyi model,
where MMD of clustering coefficient, degree and Kolomogrov-
smirov statistics of eigenvalue distribution was higher. Morever
validness was even worse. However, adding eigenfeature over-
came this issue. Also note that for GCN and GAT, marginal
noise showed significantly better MMD than uniform noise.



IV. RESULT: GRAPH TRANSFORMER DENOISER

Improving on the simple denoiser, the Graph Transformer
model deals with edge data directly, not being bottlenecked by
solely relying on node attributes. Two cases are shown: without
additional features and using additional features.

• Learning Curve: Learning curves in Fig 4 do not appear
different. However, when computing evalution metrics for
the generated graphs, distinction can be seen (refer to
Table III. The training loss for graph transformer is lower
than for the simple denoiser, with a lower bound of 0.08
compared to 0.09. This emphasizes the expresiveness of
graph transformers.

Fig. 4: Loss trend over epochs using uniform noise (left) and
marginal noise (right) for forward process. Top row corresponds
to training using no addtional features. Bottom row shows using
both eignefeatures and cycles.

• Evaluation:

C.C. Degree E-value KS Valid Unique Novel
ER 6.80 2.74 0.15 0.27 1.00 1.00

No feat., Unif. 10.31 11.33 0.17 0.21 0.95 0.95
No feat., Marg. 8.80 7.03 0.16 0.23 0.95 0.95
Add feat., Unif. 4.41 3.49 0.10 0.38 1.00 1.00
Add feat., Marg 4.47 6.65 0.10 0.36 1.00 1.00

TABLE III: Evaluation metrics for generated graphs using
the graph transformer denoiser. The results included show the
performance with and without additional features when using
uniform and marginal noise. Abbreviations and interpretation
guidelines are provided in the caption of Table I.

V. DISCUSSION

Looking at data, we can answer the 4 questions formulated
in the introduction.

• Performance of simple denoiser: In the evaluation of
the simple denoiser including additional features, GAT
outperforms GCN and GIN across most statistical mea-
sures(without addtional features, only difference was that
GIN obtains better eigenvalue Kolmogorov-Smirnov statis-
tics). Interestingly, GAT with eigenfeatures and cycle-
features reaches a close performance to the graph trans-
former denoiser. These findings suggest that, at least for
the simplified QM9 dataset, giving additional features ad-
dresses the bottleneck of solely relying on node attributes.

• Bottleneck of performance: Switching the edge pre-
diction layer from MLP into a simple linear layer had
minimal impact on the learning curve. This indicates that
the node feature aggregation layer is important for the
model’s expressivity, specially for the simple denoiser’s
performance. Moreover, GAT achieved better evaluation
metrics for graph generation than GCN and GIN.

Fig. 5: Learning curve of simple denoiser using GIN as node
aggregator. The node attribute layer remains fixed. Dotted line
corresponds to using MLP as the edge prediction layer, while
the solid line uses a simple linear layer. The loss converges to
similar values in both configurations. This suggests expressivity
is indeed bottlenecked in the node aggregation layer. Evaluation
metrics also demonstrated comparable results between the two.

• Choice of additional features: The simplicity of the
dataset limited the options for integrating additional fea-
tures. We selected eigenfeatures as they can encapsulate
long-range dependencies that are beyond the capabilities
of message-passing algorithms. Cycle features are also in-
corporated since this is not addressed by message-passing
techniques either. [15]. Including these features brings the
performance of the simple model on par with that of a
graph transformer. Validity and eigenvalue Kolmogorov-
Smirnov statistics significantly improved when integrating
new features.

• Effect of Marginal Noise: Due to the absence of node
and edge features, the effect of marginal noise in forward
diffusion is considered negligible. Training loss exhibited
comparable results between using marginal noise than
using uniform noise. However, the MMD of clustering
coefficients and degrees is notablby improved in the simple
denoiser when employing marginal noise. Thus, although
the effect of marginal noise is not deemed critical, as
also noted in [1], these findings suggest that marginal
noise is preferable to uniform noise for enhancing model
performance.

VI. CONCLUSION

We propose a simpler denoiser model that offers better
interpretability and scalability compared to SOTA graph trans-
formers. Our findings indicate that the node attribute layer is
crucial for performance. This is highlighted by comparative
assessments, which shows GAT outperforms GIN and GCN.
Moreover, changing the edge prediction layer does not affect
performance. To address the limitations of the node attribute
layer, we incorporate spectral and cycle features in it, achieving
performance comparable to graph transformer denoisers.



C.C.↓ Degree↓ E-value KS↓ Valid↑ Unique↑ Novel↑
ER 6.80 2.74 0.15 0.27 1.00 1.00

Add feat., Simple, Marg. 5.12 4.26 0.10 0.36 1.00 1.00
Add feat., GT, Marg. 4.47 6.65 0.10 0.36 1.00 1.00

TABLE IV: Evaluation metrics for generated graphs adding
eigenfeatures & cycles. Abbreviations and interpretation guide-
lines are provided in the caption of Table I. Note that by adding
additional features, simple denoiser model performed better than
erodos-reniyi model in terms of degree MMD, eigenvalue KS
score, validenss.

REFERENCES

[1] C. Vignac, I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard,
“Digress: Discrete denoising diffusion for graph generation,” arXiv
preprint arXiv:2209.14734, 2022.

[2] L. Huang, T. Xu, Y. Yu, P. Zhao, X. Chen, J. Han, Z. Xie, H. Li, W. Zhong,
K.-C. Wong et al., “A dual diffusion model enables 3d molecule generation
and lead optimization based on target pockets,” Nature Communications,
vol. 15, no. 1, p. 2657, 2024.

[3] B. Hu, A. Saragadam, A. Layton, and H. Chen, “Synthetic data from
diffusion models improve drug discovery prediction,” arXiv preprint
arXiv:2405.03799, 2024.

[4] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “Geodiff: A
geometric diffusion model for molecular conformation generation,” arXiv
preprint arXiv:2203.02923, 2022.

[5] L. Huang, H. Zhang, T. Xu, and K.-C. Wong, “Mdm: Molecular diffusion
model for 3d molecule generation,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 37, no. 4, 2023, pp. 5105–5112.

[6] J. Torge, C. Harris, S. V. Mathis, and P. Lio, “Diffhopp: A graph
diffusion model for novel drug design via scaffold hopping,” arXiv
preprint arXiv:2308.07416, 2023.

[7] A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Haci-
haliloglu, and D. Merhof, “Diffusion models in medical imaging: A
comprehensive survey,” Medical Image Analysis, p. 102846, 2023.

[8] H. Jiang, M. Imran, L. Ma, T. Zhang, Y. Zhou, M. Liang, K. Gong,
and W. Shao, “Fast-ddpm: Fast denoising diffusion probabilistic models
for medical image-to-image generation,” arXiv e-prints, pp. arXiv–2405,
2024.

[9] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui,
and M.-H. Yang, “Diffusion models: A comprehensive survey of methods
and applications,” ACM Computing Surveys, vol. 56, no. 4, pp. 1–39, 2023.

[10] K. Deja, A. Kuzina, T. Trzcinski, and J. Tomczak, “On analyzing genera-
tive and denoising capabilities of diffusion-based deep generative models,”
Advances in Neural Information Processing Systems, vol. 35, pp. 26 218–
26 229, 2022.

[11] P. Kumar and A. Sinha, “Information diffusion modeling and analysis
for socially interacting networks,” Social Network Analysis and Mining,
vol. 11, no. 1, p. 11, 2021.

[12] Y. Jiang, Y. Yang, L. Xia, and C. Huang, “Diffkg: Knowledge graph
diffusion model for recommendation,” in Proceedings of the 17th ACM
International Conference on Web Search and Data Mining, 2024, pp. 313–
321.

[13] M. Madeira, D. Thanou, and P. Frossard, “Tertiary lymphoid structures
generation through graph-based diffusion,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer,
2023, pp. 37–53.

[14] H. Yu, M. Liu, Y. Luo, A. Strasser, X. Qian, X. Qian, and S. Ji, “Qh9: A
quantum hamiltonian prediction benchmark for qm9 molecules,” 2024.

[15] Z. Chen, L. Chen, S. Villar, and J. Bruna, “Can graph neural networks
count substructures?” 2020.


