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Abstract

The learning curves of deep learning methods often behave as a power of the1

dataset size. The theoretical understanding of the corresponding exponent yields2

fundamental insights about the learning problem. However, it is still limited3

to extremely simple datasets and idealised learning scenarios, such as the lazy4

regime where the network acts as a kernel method. Recent works study how deep5

networks learn synthetic classification tasks generated by probabilistic context-free6

grammars: generative processes which model the hierarchical and compositional7

structure of language and images. Previous studies assumed composition rules8

to be equally likely, leading to non-power-law behavior for classification. In9

realistic dataset, instead, some rules may be much rarer than others. By assuming10

that the probabilities of these rules follow a Zipf law with exponent a, we show11

that the classification performance of deep neural networks decays as a power12

α= a/(1 + a) of the number of training examples, with a large multiplicative13

constant that depends on the hierarchical structure of the data.14

1 Introduction15

The improvement in performance of many machine-learning models with the amount of resources,16

including number of model parameters and training examples, has been shown to follow a simple17

power-law behaviour across several orders of magnitude [1, 2]. These power laws, known as neural18

scaling laws, are used in practice as a guideline for scaling up resources [3, 4]. Furthermore, they19

offer the possibility of explaining complex learning systems with only a few exponents.20

Among scaling laws, the learning curve describes the improvement of test performance with the21

number of training examples. A simple approach, based on pure memorisation, leads to power-law22

learning curves after assuming Zipf distributed data [5, 6, 7]. In practice, however, data are rarely23

seen twice as this viewpoint assumes. Alternatively, power-law learning curves can occur in simple24

machine learning methods such as kernel regression. It occurs if the coefficient of the true function in25

the kernel basis decay as a power-law of rank, as expected from bounds [8, 9] or direct estimation of26

exponents [10, 11, 12, 13, 14, 15, 16], a hypothesis confirmed emprically [10, 11, 12]. However,27

these approaches are restricted to kernel-based approximations of deep learning methods, whose28

limited power cannot explain the successes of modern, large language and vision models.29

In this respect, recent studies have identified hierarchical generative models such as probabilistic30

context-free grammars as model datasets that explain the difference in performance and data efficiency31

between deep learning methods and kernels or other shallow methods, while still simple enough to32

allow for some analytical understanding [17, 18, 19, 20, 21, 22, 23]. For these tasks, the input data33

are generated from their class labels according to a hierarchy of production rules, mapping high-level34

features to tuples of lower-level features. If productions rules are evenly distributed, learning curves35

are not power-law for classification problems [19], although they are for next-token prediction [22].36
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In this work, we combine one such data model—the Random Hierarchy Model (RHM) of [19]—with37

the hypothesis that the production rules of real datasets (e.g. the words in a text corpus) are Zipf38

distributed. For classification, we find that the performance of deep neural networks decays as a39

power α= a/(1 + a) of the number of training examples, with a large multiplicative constant that40

depends on the hierarchical structure of the data.41

2 Notation and setup42

Hierarchical generative model. We consider synthetic datasets that model the hierarchical and43

compositional structure of real data such as images and text. These datasets are generated via a44

probabilistic context-free grammar (PCFG) [24]: a collection of symbols and rules that prescribe how45

to generate input data starting from their label. The PCFGs we consider consist of46

• L finite vocabularies of hidden (nonterminal) symbols (Vℓ)ℓ=1,...,L;47

• A finite vocabulary of observable (terminal) symbols V ≡V0;48

• L sets of production rules describing how one symbols of Vℓ generates a tuple of (lower-49

level) symbols of Vℓ−1, for ℓ=1, . . . , L,50

µ(ℓ) → µ
(ℓ−1)
1 , . . . , µ(ℓ−1)

s , for µ(ℓ) ∈ Vℓ, µ
(ℓ−1)
i ∈ Vℓ−1, (1)

for some integer size s≥ 1. We further assume that i) the label set VL has size nc and all the other51

vocabularies have size v; ii) Each hidden symbol of level ℓ=1, . . . , L enters in m distinct production52

rules and each of these rules can be picked with probability f (ℓ)

i , with i=1, . . . ,m and
∑

i f
(ℓ)

i =1;53

iii) two different high-level symbols cannot generate the same lower-level s-tuple, i.e. low-level54

s-tuples determine the corresponding higher-level symbol unambiguously.55

In the Random Hierarchy Model (RHM) of [19], the production rules are sampled uniformly among56

all the possible sets of rules compatible with the constraints above, and their probabilities f (ℓ)

i are57

set to 1/m for all i’s and ℓ’s. Here, mimicking the power-law distribution of word frequencies [25],58

we set the production rule distribution to be uniform in all but one layer ℓ, where it follows a Zipf59

law [5, 6], f (ℓ)

k ∝ k−(1+a).60

Once the model is specified, input data are generated by picking a class label y (or level-L symbol)61

uniformly at random, then picking a production rule emanating from that label and replacing the62

label with the right-hand side of the production rule. Repeating the process L times yields the63

input sequence x=(x1, . . . , xd), with d= sL. Each feature xi is represented as a v-dimensional64

one-hot vector (xi,µ)µ=1,...,v , with xi,µ =1 if xi encodes for the µ-th element of the vocabulary and 065

otherwise. The probability of the input conditioned on the label, P {X1 = x1, . . . , Xd = xd|Y = y},66

is given by multyplying the probabilities of all the prodiction rules involved.67

Learning Setup. We focus on deep convolutional networks (CNNs) trained for classification by68

gradient descent over the empirical cross-entropy loss,69

L(XP ) = − 1

P

∑
(x,y)∈XP

log (pθ(y|x1, . . . , xd)), (2)

where XP is a set of P training examples drawn from the joint input-label distribution and pθ denotes70

the parametric approximation of the label proability,71

pθ(y|x1, . . . , xd) ≈ P {Y = y|X1 = x1, . . . , Xd = xd} . (3)

Numerical experiments are performed in PyTorch [26], with the code attached as Supplemental72

Material. Details of the machine learning models, training hyperparameters and computer resources73

are presented in App.A.74

3 Input-label correlations and sample complexity75

Correlations versus sampling noise. The analysis of [19] shows that, in the uniform production76

rules case, the sample complexity of deep neural networks trained on RHM data is controlled by the77
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correlations between the class label and the s-tuples of low-level features. Indeed, these correlations78

can be used to group together tuples corresponding to the same higher-level variable, allowing to79

learn the generative model bottom up. This correlation is measured via the probability for a datum to80

belong to class y conditioned on displaying the s-tuple µ in the j-th input patch,81

pLj (y|µ) := P
{
Y = y|X(j−1)s+1 = µ1, . . . , Xjs = µs

}
L
, (4)

with the subscript L indicating explicitly the depth of the generative model. As shown in [19], these82

correlations can be thought of as random variables over different realisations of the RHM, with mean83

1/nc and variance v/(n2
cm

L). The mean coincides with the uniform probability over classes, thus it84

is uninformative. Removing the mean results in a ‘signal’ that can be used to solve the task. However,85

when measuring correlations from a set of P training examples, these are affected by a sampling86

noise of zero mean and variance v/(ncP ). Comparing the sizes of noise and signal results in the87

sample complexity P ∗ =ncm
L actually observed.88

3.1 Nonuniform production rules at the bottom layer89

Rare productions rules will contribute little to correlations, thus a larger training set will be required90

to detect their effects and learn these rare rules. Assuming that these rules are learnt precisely when91

their effect on the correlation becomes detectable offers a perspective on the learning curve, which92

we will examine further below.93

The probability of a low-level tuple conditioned on the class reads94

P {Xj = µ|Y = y}L = f (1)

k(µ)P {Xj = µ1(µ)|Y = y}L−1 , (5)

where f (1)

k(µ) is the probability of the unique production rule that generates µ, and µ1(µ) the unique95

level-1 features that generates µ via that production rule. Summing over y yields a similar result for96

the probability of µ: P {Xj = µ}L = f (1)

k(µ)P {Xj = µ1(µ)}L−1.97

Since pLj (y|µ) is proportional to the ratio P {Xj = µ|Y = y}L /P {Xj = µ}L, it is independent98

of f (1)

k(µ) and identical to the model with uniform production rules. However, the sampling noise is99

affected by the probability of the production rules, as the number of data with Xj = µ is proportional100

to f (1)

k(µ). With respect to the case where all low-level tuples have the same probability, this effect101

is equivalent to replacing P by Pf (1)

k(µ)m, which recovers in the uniform case f (1)

k(µ) = 1/m). Thus102

it results in a sampling noise of variance v/(ncf
(1)

k(µ)P ). Therefore, the sample size necessary to103

resolve the correlations of the tuple µ with the label is P ∗(µ)=ncm
L−1/(f (1)

k(µ)).104

Ranking all the low-level tuples by the probability of the corresponding production rules yields105

a sequence of m sample complexities P ∗
k =ncm

L−1/(f (1)

k ). To estimate the learning curve, we106

assume that, when P >P ∗
k , the model can correctly classify data consisting of tuples with probability107

higher than fk. Then the model could correctly classify if and only if all sL−1 input layer patches are108

resolvable. The resulting test error, defined as the probability of misclassification, reads109

ε(P ) = 1−

 ∑
k|P∗

k<P

f (1)

k

sL−1

. (6)

When P ≫ P ∗
1 ≃ ncm

L−1, this expression implies, as shown in App.B,110

ε(P ) ≃ sL−1

(
P

ncmL−1

)−a/(1+a)

. (7)

These arguments are extended to nonuniform production rules in an arbitrary layer in App.C.111

4 Empirical scaling laws of deep CNNs112

We confirm the results of Eqs. 6,7 with the measurements of learning curves of CNNs learning the113

RHM for (i) varying Zipf exponent a in Fig.1.A, (ii) varying the layer where the production rules114

are following a Zipf law in Fig.1.B, (iii) varying the number of production rule per symbol m in115

Fig.1.C,D. The comparisons are excellent in all cases. Further evidence exploring more parameters116

are given in App.D.117
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Figure 1: (A): Learning curves of CNN trained on L = 2,m = 100, zipf-law on input layer(l = 1)
varying zipf-law exponent a. Dotted lines are predictions from Eq.6. (B): Learning curves of CNN trained on
L = 3,m = 10, a = 2, varying the layer implementing Zipf-law. Black dotted line is our scaling exponent from
Eq.7. (C),(D): Learning curves of CNN trained on L = 2, a = 1, varying m. (D) is same plot with (C) except
for rescaling x-axis. Dotted lines in (C) is theoretical prediction from Eq.6, Black dotted line in (D) is from Eq.7.

5 Conclusions118

In the simplest context-free grammars where the generative tree is fixed, and production rules are119

uniform and random, the learning curve for classification of the top node is not power-law. Instead,120

it is characterized by a single sample scale, polynomial in the number of rules m and exponential121

in the depth L of the generative model. We have shown that if production rules are not uniform122

but power-law distributed with some exponent a, then the learning curve inherits that property and123

decays as m(L−1)a/(a+1)P−a/(a+1). The exponent a/(a+1) is also found in elementary toy models124

of Zipf law learning [3, 4]. Yet, in our case, as in real data, this behaviour is not simply caused125

by pure memorization, as a datum is never seen twice for large L 1. Interestingly, we find that the126

pre-factor in front of the power-law behaviour of the learning curve can be very large, and depends127

on the combinatorial nature of the problem.128

In real data, we expect other factors to shape scaling law exponents, including the shape of the129

generative tree. For example, the tree depth L does not need to be single-valued, as would occur e.g.130

for images acquired with different zoom levels. For next-token prediction, other effects associated131

with long-range correlations, present already for uniform production rules and fixed tree depth, also132

affect learning curve exponents [22]. It is plausible that among all these effects, the one leading to133

the smallest exponent would dominate the learning curve. An interesting question for the future is134

to understand which contribution dominates empirically in which datasets, and estimate parameters135

characterizing the structure of real data.136
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A Methods205

A.1 RHM implementation206

The code implementing the RHM is available online at https://github.com/pcsl-epfl/ hierarchy-207

learning/blob/master/datasets/ hierarchical.py. The inputs sampled from the RHM are represented208

as a one-hot encoding of low-level features so that each input consists of s L pixels and v channels209

(size s L × v). The input pixels are whitened over channels, i.e., each pixel has zero mean and unit210

variance over the channels.211

A.2 Deep CNNs212

The deep CNNs we consider are made by stacking standard convolutional layers. To tailor the213

network to the structure of the data generative model, we fix both the stride and filter size of these214

layers to s. Since each layer reduces the spatial dimensionality by a factor s, the input size d must215

be an integer power of s and the CNNs depth equals log d/ log s. We use the Rectified Linear Unit216

(ReLU) (x) = max (0, x) as activation function.217

A.3 Trainig Procedure218

Training is performed within the PyTorch deep learning framework [67]. Neural networks are trained219

on P training points sampled uniformly at random from the RHM data, using Gradient Descent on220

the cross-entropy loss. Learning rate is initialised to 1 and follows a cosine annealing schedule over221

3× 104 epochs. Training stops when the training loss reaches 10−2 . The performance of the trained222

models is measured as the classification error on a test set. The size of the test set is set to 2× 106.223

Reported results for a given value of RHM parameters are averaged over 10 jointly different instances224

of the RHM and network initialization for m ≤ 20, and 3 instances for m > 20.225

B Asymptotics of the learning curve ε(P )226

Definition of g(P ):227

We define g(P ) as the proportion of contributions from the first k′ terms:228

g(P ) =

k′∑
k=1

f (1)

k =

∑k′

k=1 k
−1−a∑m

k=1 k
−1−a

, (8)

where k′ is the largest integer k such that f (1)

k > ncm
L−1/P .229

Derivation of k′:230

Starting with the condition P ∗
k < P :231

232

Substituting f (1)

k = k−1−a∑m
j=1 j−1−a , this inequality simplifies to:233

234

Rearranging gives:235

k−1−a >
ncm

L−1

P
·

m∑
j=1

j−1−a, (9)

k′ ∼
(

P

ncmL−1

) 1
1+a

. (10)
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Approximation of g(P ):236

Now, substituting k′ into the expression for g(P ):237

g(P ) =

∑k′

k=1 k
−1−a∑m

k=1 k
−1−a

. (11)

Approximation Using the Euler-Maclaurin Formula:238

To approximate these sums, we use the Euler-Maclaurin formula, which relates sums to integrals:239

b∑
k=a

f(k) ≈
∫ b

a

f(x) dx+
f(a) + f(b)

2
+

n∑
j=1

B2j

(2j)!
f (2j−1)(x)

∣∣∣∣b
a

,

where B2j are Bernoulli numbers. For large b, the correction terms diminish, allowing the sum to be240

closely approximated by the integral.241

1. Numerator of g(P ):242

Approximating the sum from 1 to k′:243

k′∑
k=1

k−1−a ≈
∫ k′

1

x−1−a dx+
k′−1−a + 1−1−a

2
+ higher-order corrections, (12)

≈
∫ k′

1

x−1−a dx, (neglecting boundary terms for large k′). (13)

The boundary term 1−1−a

2 = 1
2 is negligible relative to the integral, especially when a > 0, because244

the integral scales with k′, which grows large as P increases.245

2. Denominator of g(P ):246

For the sum from 1 to m, we approximate by extending the upper limit to infinity:247

m∑
k=1

k−1−a ≈
∫ m

1

x−1−a dx+
m−1−a + 1−1−a

2
+ correction terms, (14)

≈
∫ ∞

1

x−1−a dx, (extending to infinity is valid as m is large). (15)

For large m, the tail of the integral beyond m contributes negligibly, as x−1−a decays rapidly when248

a > 0. The impact on the result is minimal, making the approximation practically accurate.249

Evaluating the Integrals:250

∫ k′

1

x−1−a dx =

[
x−a

−a

]k′

1

=
1

a

(
1− (k′)−a

)
, (16)∫ ∞

1

x−1−a dx =

[
x−a

−a

]∞
1

=
1

a
. (17)

Since m−a → 0 for large m, the integral in the denominator simplifies to 1
a .251

Substituting into g(P ):252
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g(P ) ≈
1
a [1− (k′)−a]

1
a

(18)

= 1− (k′)−a (19)

= 1− c

(
P

ncmL−1

)− a
1+a

, for some constant c. (20)

Approximation of ε(P ):253

Substituting g(P ) into the expression for ε(P ):254

ε(P ) = 1− {g(P )}s
L−1

(21)

≈ 1−

[
1− c

(
P

ncmL−1

)− a
1+a

]sL−1

. (22)

Using a Taylor expansion around g(P ) ≈ 1 for large P :255

≈ sL−1 · c
(

P

ncmL−1

)− a
1+a

, for P ≫ ncm
L−1. (23)

∼
(

P

ncmL−1

)− a
1+a

(24)

Thus, the final approximation is:256

ε(P ) ∼
(

P

ncmL−1

)− a
1+a

. (25)

C Nonuniform production rules on an arbitrary layer257

When the nonuniform distribution of production rules affects an arbitrary layer ℓ ̸=1, the probabilities258

of low-level tuples can be decomposed as sums of conditional probabilities over a specific choice259

of production rules. As a result, the conditional class probability pLj (y|µµ) can be written as a sum260

of contributions due to production rules of a given probability f (ℓ)

k . Let us assume that the correct261

classification of data containing production rules with probability f (ℓ)

k requires the accurate resolution262

of the corresponding contribution to the label-tuples correlations. Then, we can apply again the263

argument of the previous section, and derive Eq. 6 for the behaviour of the test error.264

D More empirical results265
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Figure 2: Left: Learning curves of CNN trained on L = 2,m = 100. Zipf-law on input layer(l = 1) varying
zipf-law exponent a. Dotted lines are predictions from Eq.6. Right: Learning curves of CNN trained on
L = 3,m = 10 (Top) zipf-law on input layer(l = 1) varying zipf-law exponent a. Dotted lines are from our
theoretical prediction.

‘

Figure 3: Left: Learning curves of CNN trained on L = 2,m = 100. Zipf-law with exponent a = 1 varying
which layer to implement it. Right: Learning curves of CNN trained on L = 3,m = 10. Zipf-law with
exponent a = 2 varying which layer to implement it.

Figure 4: Left: Learning curves of CNN trained on nc = v = m,L = 2, s = 2. (Top) zipf-law on last layer
with a = 1 and varying m. Dotted lines are from our theoretical prediction Eq.6. (Bottom) same plot with
x-axis was scaled by dividing ncm

L−1 so that curves collapse, as expected from Eq.7. Right: Learning curves
of CNN trained on nc = v = m,L = 3, s = 2. (Top) zipf-law on last layer with a = 2 and varying m. Dotted
lines are from our theoretical prediction Eq.6. (Bottom) same plot with x-axis resclaed so that curves collapse.
Black dotted line is P−α = P− a

1+a from Eq.7.
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