
Spectral analysis of representational similarity with limited neurons

Understanding how neural representations align between biological and artificial systems has emerged
as a central challenge in computational neuroscience. While deep neural networks now reliably predict
neural responses across multiple brain areas, their utility for understanding biological computation
remains limited by our ability to accurately measure representational similarities. This limitation
becomes particularly acute when working with sparse neural recordings, where traditional similarity
metrics may fail to capture true representational relationships. Recent spectral analyses of similarity
measures provided careful decomposition of neural similarities in the regime of small sample sizes.
Here, we consider Centered Kernel Alignment (CKA) as a similarity measure and, using techniques
from random matrix theory, identify what spectral aspects affect the representational similarity in
the limited neuron regime. We show that the true CKA is underestimated when a small population of
neurons is randomly sampled and compared with deterministic neural network representations. We find
that increasing sample size may cause underestimating the true CKA. When the number of neurons is
small, we demonstrate that only information up to a certain eigenvector threshold can be resolved. We
develop a systematic method to denoise the CKA and demonstrate a similarity measure that is robust
against changes in population size.

While deep neural networks achieve better neural predictivity [1], recent studies have shown that
predictivity measures may suffer from finite size effects and hence require deeper analysis [2, 3]. Here,
we analyze Centered Kernel Alignment (CKA) [4] in the context of comparing neural data with limited
neuron recordings against deep network representations that are treated as deterministic models. CKA
is also a special case of another commonly used method in neuroscience, Representational Similarity
Analysis (RSA) [5], when the neural activations are constrained to unit norm. We denote the neural

recording matrix as X̃ ∈ RP×Ñ , where P is the number of stimuli and Ñ is the size of the population
from which only a subset of N ≪ Ñ neurons are assumed to be observed. The model, on the other hand,
is denoted by Ỹ ∈ RP×M activation matrix of M neurons to the same set of stimuli and assumed to be
observed in its entirety. The true CKA between the entire neural population and model activations is
given by:

CKA(Σ̃X , Σ̃Y ) =
Tr

[
Σ̃XΣ̃Y

]
√

Tr Σ̃2
X Tr Σ̃2

Y

, Σ̃X = Φ̃XΦ̃
⊤
X , Σ̃Y = Φ̃Y Φ̃

⊤
Y , (1)

where Σ̃ denotes the population Gram matrix. In real-life neural recordings, we only have access to
a subset of N neurons from this population and hence, we hope to approximate the true CKA from
the empirical one defined as CKA(ΣX(N), Σ̃Y ) where ΣX(N) is the Gram matrix constructed out of
N ≪ Ñ neurons. As shown in Fig. 1, decreasing the number of neurons N causes the observed CKA
to fall below its true value.

Surprisingly, in the case of a power-law-like eigenspectrum—a characteristic consistently observed
across many large-scale neural recordings [6]—it is the eigenvectors, rather than the eigenvalues, that
drive this drop in CKA. Assuming that the spectrum of the true Gram matrices decay with power law,
we find that the empirical CKA can be approximated by the following overlap matrices
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where ũi
X and ũa

Y are the eigenvectors of the true Gram matrices of Σ̃X and Σ̃Y , and ui
X are the

eigenvectors of the empirical Gram matrix ΣX . Applying a recent study on eigenvector overlap in high
dimensions [7], we obtain a formula for the mean behavior of the empirical CKA. In Fig. 1, we compare
our theoretical formula to the empirical CKA as a function of increasing N and find perfect agreement.
The drop in empirical CKA is attributed to the eigenvectors of sample Gram matrix ΣX getting more
random and hence making two models less aligned. In fact, the alignment worsens even for fixed N
when the number of samples increases. We demonstrate this in Fig. 1 where an increasing number of
samples hurt alignment.

Next, we analyzed how many eigenvectors can be reliably estimated given the data limitations. In
Fig. 2, we show the overlap of sample and true eigenvectors Qii = ⟨ui
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for different N . We found
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Figure 1: CKA with finite
neurons and samples. As
a test bed, we compare two
identical DNN layers trained on
CIFAR-10 with different initial-
izations and treat one of them as
neural recording. Dashed lines
and dots with error bars, resp.,
indicate theoretical and empiri-
cal CKAs. Solid lines and the
grey region indicate our estimate
of true CKA and its standard de-
viation. The CKA deviates from
its true value both for decreasing
N and increasing P .
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Figure 2: Overlap of the i-
th empirical and true eigen-
vector. Theoretical curves
for the overlap between empir-
ical vs true eigenvector (Qii =
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) for a Gram matrix

with power eigenvalues λi = i−1.
Our theory can generally inform
practitioners how many eigen-
vectors are resolvable given N .
Overlap is O(1) up to some in-
dex, then fastly decays. Here the
threshold is set to 0.6 as in black
horizontal dotted line for com-
parison.
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Figure 3: CKA between
macaque IT data and DNNs.
Same experiment as Fig. 1 but
with real neural recordings [8]
with 3200 samples and 168 neu-
rons compared to the last con-
volutional layer of an ImageNet
trained WideResNet50. The em-
pirical CKA agrees well with the
theory. Our true CKA esti-
mate has a larger variance but
gives relatively consistent scores
across different P and N .

that the first few eigenvectors can be reliably estimated up to a threshold, beyond which the overlap
suddenly decays. This informs practitioners about which eigenvectors are meaningfully contributing to
the representation similarity with a limited number of neurons.

Since the empirical Gram matrices contain unresolvable (poorly estimated) eigenvectors, we devised
a systematic way to denoise the information to estimate the true CKA. We do so by estimating the
true overlap M̃ by regressing from Q to empirical overlap M. We show that Q can be calculated from
theory [7] and M̃ can be estimated by minimizing ∥M−QM̃∥. We test our method on ANN activations
in Fig.1 and find that the estimated CKA is pretty close to the true CKA even for small numbers of
neurons and samples. Finally, we apply our theory to comparing macaque IT data [8] against the last
convolutional layer of an ImageNet trained WideResNet50 in Fig. 3. We find that our theory correctly
captures the behavior of the empirical CKA with limited neurons. Interestingly, we observe that the
mean of our CKA estimate increases with neuron size in the large sample (P ) regime, but remains
consistent for smaller sample sizes.

In this work, we analyzed a common neural similarity metric, the CKA, when neural data is com-
pared to large artificial models in the neuron-limited regime. Assuming a power-law spectrum, we found
that the CKA is dominated by the overlaps between empirical and true eigenvectors, and developed a
theory for the empirical CKA based on the spectral properties of the data. We showed that the CKA
may produce inaccurate estimates due to overlaps with random eigenvectors, and devised a method to
correct for this effect. This work demonstrates that the naive similarity measures should be carefully
analyzed in the context of limited neuron and sample sizes, and corrected accordingly to ensure their
reliability.
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